[image:]

07_BI_Analytics/DB_BI_Dashboard_Development.docx

Databricks BI & Dashboard Development Guide

Version: 1.0
Date: January 2026
Author: Mastech Digital - Data Engineering Practice

Document Information
	Field
	Value

	Version
	2.0

	Last Updated
	2025-01-29

	Classification
	Internal Use

	Owner
	Analytics & BI Team

1. Executive Summary
Business Intelligence and dashboard development on Databricks represents a paradigm shift from traditional BI architectures. By building analytics directly on the Lakehouse, organizations eliminate data movement, reduce latency, and ensure that all users—from executives to analysts—access a single source of truth.
The Modern BI Architecture Challenge
Traditional BI architectures suffer from fundamental limitations:
	Challenge
	Traditional Approach
	Lakehouse Solution

	Data freshness
	ETL delays (hours/days)
	Real-time or near-real-time

	Data duplication
	Separate data marts
	Single source of truth

	Governance
	Fragmented security
	Unified access control

	Cost
	Multiple systems
	Consolidated platform

	Self-service
	Limited flexibility
	Full SQL + natural language

Databricks BI Capabilities
Databricks provides a comprehensive BI platform:
Databricks SQL Dashboards: Native, interactive dashboards with auto-refresh
AI/BI Genie: Natural language queries powered by AI
Partner Integrations: Native connectors for Power BI, Tableau, Looker
SQL Warehouse: Serverless compute optimized for BI workloads
Unity Catalog: Unified governance for all data assets
This guide provides patterns and best practices for building enterprise-grade BI solutions.
2. BI Architecture on Databricks
2.1 Architecture Overview
┌───┐
│ BI & ANALYTICS ARCHITECTURE │
├───┤
│ │
│ ┌───┐ │
│ │ PRESENTATION LAYER │ │
│ │ ┌─────────────┐ ┌─────────────┐ ┌─────────────┐ ┌────────────┐ │ │
│ │ │ Databricks │ │ Power BI │ │ Tableau │ │ Looker │ │ │
│ │ │ Dashboards │ │ Desktop/ │ │ Desktop/ │ │ Studio │ │ │
│ │ │ + AI/BI │ │ Service │ │ Server │ │ │ │ │
│ │ └─────────────┘ └─────────────┘ └─────────────┘ └────────────┘ │ │
│ └───┘ │
│ │ │
│ ▼ │
│ ┌───┐ │
│ │ QUERY & COMPUTE LAYER │ │
│ │ ┌───┐ │ │
│ │ │ DATABRICKS SQL WAREHOUSE │ │ │
│ │ │ ┌───────────────┐ ┌───────────────┐ ┌─────────────────┐ │ │ │
│ │ │ │ Serverless │ │ Pro │ │ Classic │ │ │ │
│ │ │ │ (Auto-opt) │ │ (Predictable)│ │ (Fixed) │ │ │ │
│ │ │ └───────────────┘ └───────────────┘ └─────────────────┘ │ │ │
│ │ │ │ │ │
│ │ │ ┌───┐ │ │ │
│ │ │ │ PHOTON ENGINE (Vectorized C++) │ │ │ │
│ │ │ │ • Query Compilation • SIMD Processing • Caching │ │ │ │
│ │ │ └───┘ │ │ │
│ │ └───┘ │ │
│ └───┘ │
│ │ │
│ ▼ │
│ ┌───┐ │
│ │ SEMANTIC LAYER │ │
│ │ ┌───┐ │ │
│ │ │ UNITY CATALOG │ │ │
│ │ │ ┌───────────┐ ┌───────────┐ ┌───────────┐ ┌──────────┐ │ │ │
│ │ │ │ Catalogs │ │ Schemas │ │ Tables/ │ │ AI/BI │ │ │ │
│ │ │ │ │ │ │ │ Views │ │ Genie │ │ │ │
│ │ │ └───────────┘ └───────────┘ └───────────┘ └──────────┘ │ │ │
│ │ └───┘ │ │
│ └───┘ │
│ │ │
│ ▼ │
│ ┌───┐ │
│ │ DATA LAYER (MEDALLION) │ │
│ │ ┌─────────────┐ ┌─────────────┐ ┌─────────────┐ ┌────────────┐ │ │
│ │ │ BRONZE │ │ SILVER │ │ GOLD │ │ PLATINUM │ │ │
│ │ │ (Raw) │ │ (Cleansed) │ │ (Business) │ │ (Semantic) │ │ │
│ │ └─────────────┘ └─────────────┘ └─────────────┘ └────────────┘ │ │
│ └───┘ │
│ │
└───┘
2.2 Data Modeling for BI
Effective BI requires proper data modeling. Star and snowflake schemas remain the gold standard for analytical workloads.
Dimension Table Design:
Dimension tables contain descriptive attributes used for filtering, grouping, and labeling.
-- Customer Dimension with SCD Type 2
CREATE TABLE gold.dim_customer (
 customer_key BIGINT GENERATED ALWAYS AS IDENTITY,
 customer_id STRING NOT NULL,
 customer_name STRING,
 customer_segment STRING,
 region STRING,
 country STRING,
 city STRING,

 -- SCD Type 2 columns for historical tracking
 effective_date DATE,
 end_date DATE,
 is_current BOOLEAN,

 -- Metadata
 created_at TIMESTAMP,
 updated_at TIMESTAMP,

 CONSTRAINT pk_customer PRIMARY KEY (customer_key)
)
USING DELTA
CLUSTER BY (region, customer_segment)
TBLPROPERTIES (
 'delta.columnMapping.mode' = 'name',
 'quality' = 'gold'
);

-- Product Dimension
CREATE TABLE gold.dim_product (
 product_key BIGINT GENERATED ALWAYS AS IDENTITY,
 product_id STRING NOT NULL,
 product_name STRING,
 product_category STRING,
 product_subcategory STRING,
 brand STRING,
 unit_cost DECIMAL(18, 4),
 unit_price DECIMAL(18, 4),

 -- SCD Type 2 columns
 effective_date DATE,
 end_date DATE,
 is_current BOOLEAN,

 -- Metadata
 created_at TIMESTAMP,
 updated_at TIMESTAMP,

 CONSTRAINT pk_product PRIMARY KEY (product_key)
)
USING DELTA
CLUSTER BY (product_category);

-- Date Dimension (essential for time-based analysis)
CREATE TABLE gold.dim_date (
 date_key INT NOT NULL,
 full_date DATE NOT NULL,
 day_of_week INT,
 day_name STRING,
 day_of_month INT,
 day_of_year INT,
 week_of_year INT,
 month_number INT,
 month_name STRING,
 quarter INT,
 quarter_name STRING,
 year INT,
 fiscal_year INT,
 fiscal_quarter INT,
 is_weekend BOOLEAN,
 is_holiday BOOLEAN,
 holiday_name STRING,

 CONSTRAINT pk_date PRIMARY KEY (date_key)
)
USING DELTA;
Fact Table Design:
Fact tables contain measurable business events with foreign keys to dimensions.
-- Sales Fact Table
CREATE TABLE gold.fact_sales (
 sale_key BIGINT GENERATED ALWAYS AS IDENTITY,

 -- Foreign Keys (dimension references)
 date_key INT NOT NULL,
 customer_key BIGINT NOT NULL,
 product_key BIGINT NOT NULL,
 store_key BIGINT NOT NULL,

 -- Degenerate Dimensions (transaction identifiers)
 order_number STRING,
 line_number INT,

 -- Measures (the numbers we aggregate)
 quantity INT,
 unit_price DECIMAL(18, 4),
 discount_amount DECIMAL(18, 4),
 gross_amount DECIMAL(18, 4),
 net_amount DECIMAL(18, 4),
 cost_amount DECIMAL(18, 4),
 profit_amount DECIMAL(18, 4),

 -- Metadata
 transaction_timestamp TIMESTAMP,
 created_at TIMESTAMP,

 -- Foreign Key Constraints (informational for optimizers)
 CONSTRAINT fk_date FOREIGN KEY (date_key) REFERENCES gold.dim_date(date_key),
 CONSTRAINT fk_customer FOREIGN KEY (customer_key) REFERENCES gold.dim_customer(customer_key),
 CONSTRAINT fk_product FOREIGN KEY (product_key) REFERENCES gold.dim_product(product_key)
)
USING DELTA
CLUSTER BY (date_key, customer_key)
TBLPROPERTIES (
 'delta.autoOptimize.optimizeWrite' = 'true',
 'delta.autoOptimize.autoCompact' = 'true'
);
2.3 Pre-Aggregation for Performance
Create aggregation tables for common dashboard queries to ensure sub-second response times.
-- Daily Sales Aggregation
CREATE TABLE gold.agg_daily_sales AS
SELECT
 date_key,
 customer_key,
 product_key,
 COUNT(*) AS transaction_count,
 SUM(quantity) AS total_quantity,
 SUM(gross_amount) AS total_gross_amount,
 SUM(net_amount) AS total_net_amount,
 SUM(profit_amount) AS total_profit,
 AVG(discount_amount) AS avg_discount
FROM gold.fact_sales
GROUP BY date_key, customer_key, product_key;

-- Monthly Summary with Dimensions
CREATE TABLE gold.agg_monthly_sales AS
SELECT
 d.year,
 d.month_number,
 d.month_name,
 c.region,
 c.customer_segment,
 p.product_category,
 COUNT(DISTINCT f.customer_key) AS unique_customers,
 COUNT(*) AS transaction_count,
 SUM(f.quantity) AS total_quantity,
 SUM(f.net_amount) AS total_revenue,
 SUM(f.profit_amount) AS total_profit,
 SUM(f.profit_amount) / NULLIF(SUM(f.net_amount), 0) AS profit_margin
FROM gold.fact_sales f
JOIN gold.dim_date d ON f.date_key = d.date_key
JOIN gold.dim_customer c ON f.customer_key = c.customer_key
JOIN gold.dim_product p ON f.product_key = p.product_key
GROUP BY d.year, d.month_number, d.month_name,
 c.region, c.customer_segment, p.product_category;
3. Databricks SQL Dashboards
3.1 Dashboard Query Design
Effective dashboard queries should be optimized for interactivity with parameters.
KPI Query with Parameters:
-- KPI Query: Executive Metrics
-- Parameters: @start_date, @end_date, @region
SELECT
 SUM(net_amount) AS total_revenue,
 SUM(profit_amount) AS total_profit,
 COUNT(DISTINCT customer_key) AS unique_customers,
 COUNT(*) AS total_transactions,
 SUM(profit_amount) / NULLIF(SUM(net_amount), 0) * 100 AS profit_margin_pct
FROM gold.fact_sales f
JOIN gold.dim_date d ON f.date_key = d.date_key
JOIN gold.dim_customer c ON f.customer_key = c.customer_key
WHERE d.full_date BETWEEN '{{start_date}}' AND '{{end_date}}'
 AND (c.region = '{{region}}' OR '{{region}}' = 'All');
Time Series with Moving Averages:
-- Daily Revenue Trend with Moving Averages
SELECT
 d.full_date,
 d.day_name,
 SUM(f.net_amount) AS daily_revenue,
 SUM(f.profit_amount) AS daily_profit,
 COUNT(*) AS transaction_count,

 -- 7-day moving average
 AVG(SUM(f.net_amount)) OVER (
 ORDER BY d.full_date
 ROWS BETWEEN 6 PRECEDING AND CURRENT ROW
) AS revenue_7day_ma,

 -- 30-day moving average
 AVG(SUM(f.net_amount)) OVER (
 ORDER BY d.full_date
 ROWS BETWEEN 29 PRECEDING AND CURRENT ROW
) AS revenue_30day_ma
FROM gold.fact_sales f
JOIN gold.dim_date d ON f.date_key = d.date_key
WHERE d.full_date BETWEEN '{{start_date}}' AND '{{end_date}}'
GROUP BY d.full_date, d.day_name
ORDER BY d.full_date;
Category Breakdown with Percentages:
-- Revenue by Category with Percentage of Total
SELECT
 p.product_category,
 SUM(f.net_amount) AS category_revenue,
 SUM(f.profit_amount) AS category_profit,
 COUNT(DISTINCT f.customer_key) AS category_customers,
 SUM(f.net_amount) / SUM(SUM(f.net_amount)) OVER () * 100 AS revenue_pct
FROM gold.fact_sales f
JOIN gold.dim_product p ON f.product_key = p.product_key
JOIN gold.dim_date d ON f.date_key = d.date_key
WHERE d.full_date BETWEEN '{{start_date}}' AND '{{end_date}}'
GROUP BY p.product_category
ORDER BY category_revenue DESC;
Top Customers Analysis:
-- Top 20 Customers by Revenue
SELECT
 c.customer_name,
 c.region,
 c.customer_segment,
 SUM(f.net_amount) AS total_revenue,
 SUM(f.profit_amount) AS total_profit,
 COUNT(*) AS transaction_count,
 AVG(f.net_amount) AS avg_transaction_value
FROM gold.fact_sales f
JOIN gold.dim_customer c ON f.customer_key = c.customer_key
JOIN gold.dim_date d ON f.date_key = d.date_key
WHERE d.full_date BETWEEN '{{start_date}}' AND '{{end_date}}'
 AND c.is_current = TRUE
GROUP BY c.customer_name, c.region, c.customer_segment
ORDER BY total_revenue DESC
LIMIT 20;
3.2 Dashboard Configuration
Configure dashboards programmatically for consistency and version control.
{
 "dashboard_name": "Executive Sales Dashboard",
 "description": "Real-time sales performance monitoring",
 "refresh_schedule": "0 */15 * * * *",
 "warehouse_id": "abc123def456",
 "parameters": [
 {
 "name": "start_date",
 "type": "date",
 "default": "{{ date.start_of_month }}",
 "title": "Start Date"
 },
 {
 "name": "end_date",
 "type": "date",
 "default": "{{ date.today }}",
 "title": "End Date"
 },
 {
 "name": "region",
 "type": "dropdown",
 "query_based": true,
 "query": "SELECT DISTINCT region FROM gold.dim_customer UNION ALL SELECT 'All'",
 "default": "All",
 "title": "Region"
 }
],
 "widgets": [
 {
 "type": "counter",
 "title": "Total Revenue",
 "query_id": "kpi_revenue",
 "format": "$,.0f"
 },
 {
 "type": "line_chart",
 "title": "Revenue Trend",
 "query_id": "daily_trend",
 "x_axis": "full_date",
 "y_axis": ["daily_revenue", "revenue_7day_ma"]
 }
]
}
4. AI/BI Genie Integration
AI/BI Genie enables business users to query data using natural language, democratizing data access across the organization.
4.1 Genie-Optimized Views
Create views with rich metadata to help Genie understand your data.
-- Create Genie-optimized view with descriptive column comments
CREATE OR REPLACE VIEW gold.genie_sales_view
COMMENT 'Sales data optimized for natural language queries via AI/BI Genie'
AS
SELECT
 d.full_date AS sale_date COMMENT 'Date when the sale occurred',
 d.month_name AS month COMMENT 'Month name of the sale',
 d.quarter_name AS quarter COMMENT 'Quarter of the sale (Q1, Q2, Q3, Q4)',
 d.year AS year COMMENT 'Year of the sale',

 c.customer_name AS customer COMMENT 'Name of the customer',
 c.customer_segment AS segment COMMENT 'Customer segment: Enterprise, SMB, Consumer',
 c.region AS region COMMENT 'Geographic region: North, South, East, West',
 c.country AS country COMMENT 'Country of the customer',

 p.product_name AS product COMMENT 'Name of the product sold',
 p.product_category AS category COMMENT 'Product category',
 p.product_subcategory AS subcategory COMMENT 'Product subcategory',
 p.brand AS brand COMMENT 'Product brand name',

 f.quantity AS units_sold COMMENT 'Number of units sold',
 f.unit_price AS price COMMENT 'Price per unit in USD',
 f.discount_amount AS discount COMMENT 'Discount amount in USD',
 f.net_amount AS revenue COMMENT 'Total revenue from sale in USD',
 f.profit_amount AS profit COMMENT 'Profit from sale in USD',
 f.profit_amount / NULLIF(f.net_amount, 0) AS profit_margin
 COMMENT 'Profit margin as decimal (0.25 = 25%)'
FROM gold.fact_sales f
JOIN gold.dim_date d ON f.date_key = d.date_key
JOIN gold.dim_customer c ON f.customer_key = c.customer_key
JOIN gold.dim_product p ON f.product_key = p.product_key
WHERE c.is_current = TRUE;

-- Add Genie-specific metadata
ALTER VIEW gold.genie_sales_view SET TBLPROPERTIES (
 'genie.enabled' = 'true',
 'genie.sample_questions' = 'What was total revenue last month?|Which region had highest sales?|Show me top 10 products by profit|Compare Q1 vs Q2 revenue',
 'genie.business_context' = 'This view contains all sales transactions with customer and product details. Use for revenue analysis, customer segmentation, and product performance.'
);
4.2 Genie Space Instructions
Provide context to help Genie interpret business terminology.
AI/BI Genie Space Instructions

Data Context
This Genie space provides access to sales and revenue data for business analysis.

Key Metrics Definitions
- **Revenue**: Total sales amount after discounts (net_amount)
- **Profit**: Revenue minus cost of goods sold
- **Profit Margin**: Profit divided by Revenue, expressed as percentage
- **AOV (Average Order Value)**: Average revenue per transaction

Common Time Periods
- YTD: Year to Date (January 1 to current date)
- MTD: Month to Date (First of month to current date)
- QTD: Quarter to Date (First of quarter to current date)
- LY: Last Year (same period previous year)

Business Rules
1. Always filter for current customers (is_current = TRUE)
2. Revenue comparisons should use net_amount
3. Customer counts should be distinct
4. When asked about "sales", interpret as revenue unless units specified

Example Question Mappings
User Question	SQL Interpretation
"Total sales last month"	SUM(revenue) WHERE month = last_month
"Top customers"	GROUP BY customer ORDER BY SUM(revenue) DESC LIMIT 10
"Best selling products"	GROUP BY product ORDER BY SUM(units_sold) DESC
"Revenue by region"	GROUP BY region with SUM(revenue)
5. Power BI Integration
5.1 Connection Architecture
┌───┐
│ POWER BI CONNECTION ARCHITECTURE │
├───┤
│ │
│ POWER BI SERVICE │
│ ┌──┐ │
│ │ Workspaces │ Datasets │ Reports/Dashboards │ │
│ └──┘ │
│ │ │
│ │ DirectQuery / Import │
│ ▼ │
│ CONNECTION OPTIONS │
│ ┌──┐ │
│ │ Option 1: Partner Connect (Recommended) │ │
│ │ • Native integration via Databricks Partner Connect │ │
│ │ • Automatic credential pass-through │ │
│ │ • Simplified setup via Unity Catalog │ │
│ ├──┤ │
│ │ Option 2: Databricks ODBC/JDBC Connector │ │
│ │ • Standard connector for all BI tools │ │
│ │ • Personal Access Token or OAuth authentication │ │
│ │ • Supports DirectQuery and Import modes │ │
│ └──┘ │
│ │ │
│ ▼ │
│ DATABRICKS SQL WAREHOUSE │
│ Server: adb-1234567890.1.azuredatabricks.net │
│ HTTP Path: /sql/1.0/warehouses/abc123def456 │
│ │
└───┘
5.2 Power Query M Code
// Power Query M - Databricks Connection
let
 // Connection parameters
 ServerHostname = "adb-1234567890.1.azuredatabricks.net",
 HTTPPath = "/sql/1.0/warehouses/abc123def456",
 Catalog = "analytics",
 Schema = "gold",

 // Connect to Databricks
 Source = Databricks.Catalogs(ServerHostname, HTTPPath, [Catalog=Catalog]),

 // Navigate to schema
 analytics_Database = Source{[Name=Catalog]}[Data],
 gold_Schema = analytics_Database{[Name=Schema]}[Data],

 // Get specific table
 fact_sales_Table = gold_Schema{[Name="fact_sales"]}[Data]
in
 fact_sales_Table

// Optimized query with native SQL
let
 Source = Databricks.Catalogs(ServerHostname, HTTPPath),
 SQLQuery = "
 SELECT
 d.full_date,
 d.year,
 d.month_name,
 c.region,
 p.product_category,
 SUM(f.net_amount) AS revenue,
 SUM(f.profit_amount) AS profit
 FROM analytics.gold.fact_sales f
 JOIN analytics.gold.dim_date d ON f.date_key = d.date_key
 JOIN analytics.gold.dim_customer c ON f.customer_key = c.customer_key
 JOIN analytics.gold.dim_product p ON f.product_key = p.product_key
 WHERE d.full_date >= DATEADD(YEAR, -2, CURRENT_DATE())
 GROUP BY d.full_date, d.year, d.month_name, c.region, p.product_category
 ",
 QueryResult = Value.NativeQuery(Source, SQLQuery)
in
 QueryResult
5.3 DAX Measures
// Revenue Measures
Total Revenue = SUM(fact_sales[net_amount])

Total Profit = SUM(fact_sales[profit_amount])

Profit Margin =
DIVIDE(
 [Total Profit],
 [Total Revenue],
 0
)

// Time Intelligence
Revenue YTD =
TOTALYTD(
 [Total Revenue],
 dim_date[full_date]
)

Revenue PY =
CALCULATE(
 [Total Revenue],
 SAMEPERIODLASTYEAR(dim_date[full_date])
)

Revenue YoY Growth =
DIVIDE(
 [Total Revenue] - [Revenue PY],
 [Revenue PY],
 0
)

// Customer Metrics
Unique Customers = DISTINCTCOUNT(fact_sales[customer_key])

Average Order Value =
DIVIDE(
 [Total Revenue],
 COUNTROWS(fact_sales),
 0
)
6. Tableau Integration
6.1 Connection Configuration
┌──┐
│ Tableau Connection Parameters │
├──┤
│ Server: adb-1234567890.1.azuredatabricks.net │
│ Port: 443 │
│ HTTP Path: /sql/1.0/warehouses/abc123def456 │
│ Authentication: Personal Access Token or OAuth │
│ SSL: Required │
│ Initial SQL: SET spark.sql.adaptive.enabled = true; │
└──┘
6.2 Tableau Calculated Fields
// Revenue Metrics
[Total Revenue]
SUM([Net Amount])

[Profit Margin]
SUM([Profit Amount]) / SUM([Net Amount])

// Customer Analysis
[Customer Lifetime Value]
{ FIXED [Customer Key] : SUM([Net Amount]) }

[Customer Recency]
DATEDIFF('day', { FIXED [Customer Key] : MAX([Sale Date]) }, TODAY())

// Cohort Analysis
[First Purchase Month]
{ FIXED [Customer Key] : MIN(DATETRUNC('month', [Sale Date])) }

[Months Since First Purchase]
DATEDIFF('month', [First Purchase Month], DATETRUNC('month', [Sale Date]))

// Pareto Analysis
[Running Revenue %]
RUNNING_SUM(SUM([Net Amount])) / TOTAL(SUM([Net Amount]))
6.3 Tableau-Optimized Extract
-- Create extract table optimized for Tableau
CREATE TABLE gold.tableau_sales_extract AS
SELECT
 d.full_date,
 d.year,
 d.quarter,
 d.month_number,
 d.month_name,
 d.week_of_year,
 d.day_of_week,
 d.is_weekend,

 c.customer_key,
 c.customer_name,
 c.customer_segment,
 c.region,
 c.country,

 p.product_key,
 p.product_name,
 p.product_category,
 p.product_subcategory,
 p.brand,

 SUM(f.quantity) AS total_quantity,
 SUM(f.net_amount) AS total_revenue,
 SUM(f.profit_amount) AS total_profit,
 COUNT(*) AS transaction_count
FROM gold.fact_sales f
JOIN gold.dim_date d ON f.date_key = d.date_key
JOIN gold.dim_customer c ON f.customer_key = c.customer_key
JOIN gold.dim_product p ON f.product_key = p.product_key
WHERE c.is_current = TRUE
GROUP BY ALL;

-- Optimize for Tableau access patterns
OPTIMIZE gold.tableau_sales_extract ZORDER BY (full_date, region, product_category);
7. Performance Optimization
7.1 Materialized Views
-- Create materialized view for daily summaries
CREATE MATERIALIZED VIEW gold.mv_daily_sales_summary
COMMENT 'Pre-aggregated daily sales for dashboard performance'
AS
SELECT
 date_key,
 SUM(net_amount) AS total_revenue,
 SUM(profit_amount) AS total_profit,
 COUNT(*) AS transaction_count,
 COUNT(DISTINCT customer_key) AS unique_customers
FROM gold.fact_sales
GROUP BY date_key;

-- Schedule automatic refresh
ALTER MATERIALIZED VIEW gold.mv_daily_sales_summary
SET SCHEDULE CRON '0 */6 * * *'; -- Every 6 hours
7.2 Query Caching
-- Use cache hints for frequently-run queries
SELECT /*+ RESULT_CACHE */
 region,
 product_category,
 SUM(revenue) AS total_revenue
FROM gold.agg_monthly_sales
WHERE year = 2025
GROUP BY region, product_category;

-- Monitor cache effectiveness
SELECT
 warehouse_id,
 COUNT(*) AS query_count,
 SUM(CASE WHEN from_cache THEN 1 ELSE 0 END) AS cache_hits,
 ROUND(100.0 * SUM(CASE WHEN from_cache THEN 1 ELSE 0 END) / COUNT(*), 2) AS cache_hit_rate
FROM system.query.history
WHERE start_time >= CURRENT_DATE - INTERVAL 7 DAYS
GROUP BY warehouse_id;
8. Best Practices Summary
8.1 Data Modeling
	Practice
	Recommendation

	Schema Design
	Use star/snowflake schemas

	Aggregations
	Pre-aggregate common queries

	Partitioning
	Partition by date for time-based filtering

	Clustering
	Cluster on frequently filtered columns

	Data Types
	Use appropriate types (avoid STRING for dates/numbers)

8.2 Dashboard Design
	Practice
	Recommendation

	Query Design
	Write efficient SQL, avoid SELECT *

	Caching
	Leverage result caching

	Parameters
	Use dropdowns over free text

	Refresh
	Schedule during off-peak hours

	Performance
	Test with production data volumes

Document Control
	Field
	Value

	Version
	2.0

	Created
	2025-01-24

	Last Updated
	2025-01-29

	Next Review
	2025-04-29

	Author
	Analytics & BI Team

image1.png
#MAST=CH
DIGITAL

